CS221: Logic Design

Instructors:
Dr. Ahmed Shalaby http:/bu.edu.eq/staffiahmedshalaby $14 /$
Dr. Fatma Sakr

Digital Fundamentals

CHAPTER 7
 Latches, Flip-Flops and Timers

Latches

- S-R (Set-Reset) latch
- Gated S-R latch
- Gated D latch

Latches

Latches

A latch is a temporary storage device that has two stable states (bistable). It is a basic form of memory.

The S-R (Set-Reset) latch is the most basic type. It can be constructed from NOR gates or NAND gates.
With NOR gates, the latch responds to active-HIGH inputs.
With NAND gates, the latch responds to active-LOW inputs.

NOR Active-HIGH Latch

NAND Active-LOW Latch

Latches

Active-HIGH S-R Latch

The active-HIGH S-R latch is in a stable (latched) condition when both inputs are LOW.

Inputs	Output	
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

Assume the latch is initially $\operatorname{RESET}(Q=0)$ and the inputs are at their inactive level (0).
To SET the latch ($Q=1$), a momentary HIGH signal is applied to the S input while the R remains LOW.

To RESET the latch ($Q=0$), a momentary HIGH signal is applied to the R input while the S remains LOW.
Never apply an active set and reset at the same time (invalid).

Latches

Active-HIGH S-R Latch

INPUTS		OUTPUTS	
S	R	Q	\bar{Q}

Latches

Active-LOW S-R Latch

The active-LOW $\bar{S}-\bar{R}$ latch is in a stable (latched) condition when both inputs are HIGH.

Inputs	
A	Output
A	B
0	0
0	1
1	0
1	1

Assume the latch is initially RESET ($Q=0$) and the inputs are at their inactive level (1).

To SET the latch $(Q=1)$, a momentary LOW signal is applied to the \bar{S} input while the \bar{R} remains HIGH.

To RESET the latch $(Q=0)$ a momentary LOW is applied to the \bar{R} input while \bar{S} is HIGH.
Never apply an active set and reset at the same time (invalid).

Latches

Active-LOW S-R Latch

INPUTS		OUTPUTS		COMMENTS
\bar{s}	\bar{R}	Q	\bar{Q}	
1	1	NC	NC	No change. Latch remains in present state.
0	1	1	0	Latch SET.
1	0	0	1	Latch RESET.
0	0	1	1	Invalid condition

Latches

Latches

The active-LOW S-R latch is available as the 74LS279A IC.
$\bar{S}-\bar{R}$ latches are frequently used for switch debounce circuits as shown:

Show the Q output with relation to the input signals. Assume Q starts LOW.
 Keep in mind that S and R are only active when EN is HIGH.

Latches

Latches

The D latch is an variation of the $S-R$ latch but combines the S and R inputs into a single D input as shown:

A simple rule for the D latch is:
Q follows D when the Enable is active.

Latches

Latches

The truth table for the D latch summarizes its operation.
If $E N$ is LOW, then there is no change in the output and it is latched.

Latches

Latches

■! !

Notice that the Enable is not active during these times, so the output is latched.

Edge-Triggered Flip-Flops

- Edge-triggered D flip-flop
- Edge-triggered J-K flip-flop

Edge-Triggered Flip-Flops

Flip-flops

A flip-flop differs from a latch in the manner it changes states. A flip-flop is a clocked device, in which only the clock edge determines when a new bit is entered.

The active edge can be positive or negative.

Edge-Triggered Flip-Flops

Flip-flops

The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the rising edge of the clock; otherwise it is latched. The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

(a) Positive-edge triggered

(b) Negative-edge triggered

Edge-Triggered Flip-Flops

Edge-triggered D flip-flop

INPUTS		OUTPUTS		COMMENTS
D	CLK	Q	\bar{Q}	
1	\uparrow		0	SET (stores a 1)
0	\uparrow		1	RESET (stores a 0)
T = clock transition LOW to HiGH				

Edge-Triggered Flip-Flops

Flip-flops

The J-K flip-flop is more versatile than the D flip flop.
In addition to the clock input, it has two inputs, labeled J and K. When both J and $K=1$, the output changes states (toggles) on the active clock edge (in this case, the rising edge).

Edge-Triggered Flip-Flops

Edge-triggered J-K flip-flop

Eyample

Determine the Q output for the $J-K$ flip-flop, given the inputs shown.

Notice that the outputs change on the leading edge of the clock.

Edge-Triggered Flip-Flops

Flip-flops

A D-flip-flop does not have a toggle mode like the J-K flipflop, but you can hardwire a toggle mode by connecting \bar{Q} back to D as shown. This is useful in some counters as you will see in Chapter 8.
For example, if Q is LOW, \bar{Q} is HIGH and the flip-flop will toggle on the next clock edge. Because the flip-flop only changes on the active edge, the output will only change once for each clock pulse.

Edge-Triggered Flip-Flops

Flip-flop Applications

Principal flip-flop applications are for temporary data storage, as frequency dividers, and in Counters (which are covered in detail in Chapter 8).

Edge-Triggered Flip-Flops

Output

Flip-flop Applications

Typically, for data storage applications, a group of flip-flops are connected to parallel data lines and clocked together.

Data is stored until the next clock pulse.

Parallel data input lines

Edge-Triggered Flip-Flops

Flip-flop Applications

For frequency division, it is simple to use a flip-flop in the toggle mode or to chain a series of toggle flip flops to continue to divide by two. HIGH HIGH

One flip-flop will divide $f_{\text {in }}$ by 2 , two flip-flops will divide $f_{\text {in }}$ by 4 (and so on). A side benefit of frequency division is that the output has an exact 50% duty cycle.

Multivibrator

- Monostable (One-Shot)
- Astable.

Multivibrator

Monostable

The monostable or one-shot multivibrator is a device with only one stable state. When triggered, it goes to its unstable state for a predetermined length of time, then returns to its stable state.

For most one-shots, the length of time in the unstable state $\left(t_{W}\right)$ is determined by an external $R C$ circuit.

Multivibrator

Astable

An astable multivibrator is a device that has no stable states; it changes back and forth (oscillates) between two unstable states without any external triggering. The resulting output is typically a square wave that is used as a clock signal in many types of sequential logic circuits.

Multivibrator

The 555 timer

The 555 timer can be configured in various ways. A basic monostable is shown. The pulse width is determined by $R_{1} C_{1}$ and is approximately $t_{W}=1.1 R_{1} C_{1}$.

The trigger is a negative-going pulse.

Multivibrator

The 555 timer

The 555 can be configured as a basic astable multivibrator with the circuit shown. In this circuit C_{1} charges through R_{1} and R_{2} and discharges through only R_{2}.

The output frequency is given by:

$$
f=\frac{1.44}{\left(R_{1}+2 R_{2}\right) C_{1}}
$$

Multivibrator

The 555 timer

Given the components, you can read the frequency from the chart. Alternatively, you can use the chart to pick components for a desired frequency.

Timer 555 Applications

Flasher

Tone Generator

