CS221: Logic Design

Instructors: Dr. Ahmed Shalaby <u>http://bu.edu.eg/staff/ahmedshalaby14#</u> Dr. Fatma Sakr

Digital Fundamentals

CHAPTER 7 Latches, Flip-Flops and Timers

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

- S-R (Set-Reset) latch
- Gated S-R latch
- Gated D latch

Latches

A **latch** is a **temporary storage device** that has two stable states (bistable). It is a **basic form of memory**.

The S-R (Set-Reset) latch is the most basic type. It can be constructed from NOR gates or NAND gates.

With NOR gates, the latch responds to active-HIGH inputs. With NAND gates, the latch responds to active-LOW inputs.

NOR Active-HIGH Latch

NAND Active-LOW Latch

Active-HIGH S-R Latch

The active-HIGH S-R latch is in a stable (latched) condition when both inputs are LOW.

Assume the latch is initially **RESET** (Q = 0) and the inputs are at their inactive level (0).

To SET the latch (Q = 1), a momentary HIGH signal İS applied to the S input while the R remains LOW.

To RESET the latch (Q = 0), a momentary HIGH signal is applied to the *R* input while the S remains LOW

Never apply an active set and reset at the same time (invalid). Digital Fundamentals, 9/e

Floyd

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Output

Inputs

A

B

Active-HIGH S-R Latch

INPUTS		OUTPUTS		
5	R	Q	Q	COMMENTS
0	0	NC	NC	No change. Latch remains in present state.
0	1	0	1	Latch RESET.
1	0	1	0	Latch SET.
1	1	0	0	Invalid condition

2000000

Active-LOW S-R Latch

The active-LOW $\overline{S}-\overline{R}$ latch is in a stable (latched) condition when both inputs are HIGH.

Assume the latch is initially RESET (Q = 0) and the inputs are at their inactive level (1).

To SET the latch (Q = 1), a momentary LOW signal is applied to the \overline{S} input while the \overline{R} remains HIGH.

To **RESET the latch (Q = 0)** a momentary LOW is applied to the \overline{R} input while \overline{S} is HIGH.

Never apply an active set and reset at the same time (invalid).

Floyd Digital Fundamentals, 9/e

Inp	uts	Output
A	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Active-LOW S-R Latch

INPUTS		OUTPUTS				
<u>s</u> <u>R</u>		Q	Q	COMMENTS		
1	1	NC	NC	No change. Latch remains in present state.		
0	1	1	0	Latch SET.		
1	0	0	1	Latch RESET.		
0	0	1	1	Invalid condition		

Latches

2

The active-LOW S-R latch is available as the 74LS279A IC.

1S1

1S2

(3)

(1`

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

(4)

1Q

Latches

The *D* latch is an variation of the *S*-*R* latch but combines the *S* and *R* inputs into a single *D* input as shown:

A simple rule for the *D* latch is:

Q follows *D* when the Enable is active.

Latches

The truth table for the *D* latch summarizes its operation.

If *EN* is LOW, then there is no change in the output and it is latched.

In	Inputs		outs	
D	EN	Q	Q	Comments
0 1 X	1 1 0	0 1 Q ₀	1 0 Q0	RESET SET No change

_____ D ____ Q _____ EN ____ Q

> Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Notice that the Enable is not active during these times, so the output is latched.

- Edge-triggered D flip-flop
- Edge-triggered J-K flip-flop

Flip-flops

A flip-flop differs from a latch in the manner it changes states. A flip-flop is a clocked device, in which only the clock edge determines when a new bit is entered.

The active edge can be positive or negative.

Flip-flops

The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its *D* input only on the rising edge of the clock; otherwise it is latched. The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

In	Inputs		outs	
D	CLK	Q	\overline{Q}	Comments
1	1	1	0	SET
0	1	0	1	RESET

(a) Positive-edge triggered

(b) Negative-edge triggered

Edge-triggered D flip-flop

D III	NPUTS CLK	00		COMMENTS
	•			
1	1	1	0	SET (stores a 1)
0	\uparrow	0	1	RESET (stores a 0)

Flip-flops

The J-K flip-flop is more versatile than the D flip flop.

In addition to the clock input, it has two inputs, labeled *J* and *K*. When both *J* and K = 1, the output changes states (toggles) on the active clock edge (in this case, the rising edge).

	Inputs			puts	
J	K	CLK	Q	Q	Comments
0	0	†	Q_0	\overline{Q}_{0}	No change
0	1	1	0	1	RESET
1	0	+	1	0	SET
1	1	1	\overline{Q}_{0}	Q_0	Toggle

Flip-flops

A D-flip-flop does not have a toggle mode like the J-K flipflop, but you can hardwire a toggle mode by connecting \overline{Q} back to D as shown. This is useful in some counters as you will see in Chapter 8.

For example, if Q is LOW, \overline{Q} is HIGH and the flip-flop will toggle on the next clock edge. Because the flip-flop only changes on the active edge, the output will only change once for each clock

pulse.

Floyd Digital Fundamentals, 9/e

D flip-flop hardwired for a toggle mode

Flip-flop Applications

Principal flip-flop applications are for temporary data storage, as frequency dividers, and in **Counters** (which are covered in detail in Chapter 8).

Flip-flop Applications

For **frequency division**, it is simple to use a flip-flop in the toggle mode or to chain a series of toggle flip flops to continue to divide by two. HIGH HIGH

One flip-flop will divide f_{in} by 2, two flip-flops will divide f_{in} by 4 (and so on). A side benefit of frequency division is that the output has an exact 50% duty cycle.

Waveforms:

- Monostable (One-Shot)
- Astable.

Monostable

The **monostable** or **one-shot** multivibrator is a device with only one stable state. When triggered, it goes to its unstable state for a predetermined length of time, then returns to its stable state. $+_{V}$

For most one-shots, the length of time in the unstable state (t_W) is determined by an external *RC* circuit.

Trigger

Q

Astable

An astable multivibrator is a device that has no stable states; it changes back and forth (oscillates) between two unstable states without any external triggering. The resulting output is typically a square wave that is used as a clock signal in many types of sequential logic circuits.

The 555 timer

The 555 timer can be configured in various ways. A basic monostable is shown. The pulse width is determined by R_1C_1 and is approximately $t_W = 1.1R_1C_1$.

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

The 555 timer

The 555 can be configured as a basic astable multivibrator with the circuit shown. In this circuit C_1 charges through R_1 and R_2 and discharges through only R_2 .

The output frequency is given by:

$$f = \frac{1.44}{(R_1 + 2R_2)C_1}$$

The 555 timer

Given the components, you can read the frequency from the chart. Alternatively, you can use the chart to pick components for a desired frequency.

Floyd Digital Fundamentals, 9/e Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved

Timer 555 Applications

rson Education, Inc. , New Jersey 07458 All rights reserved.